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Abstract
The dependence of the lattice parameter of rare-gas (Lennard-Jones) solids
on isotopic mass has been studied by the path-integral Monte Carlo method.
Simulations were carried out in the isothermal–isobaric ensemble,which allows
us to study this isotopic effect as a function of temperature and pressure. In
the limit T → 0 and at ambient pressure, the difference �a between lattice
parameters of isotopically pure crystals with lightest and heaviest isotopic mass
is found to range from 8.7×10−3 Å for Ne to 1.2×10−3 Å for Xe. This isotopic
effect decreases appreciably upon increasing temperature. At 80 K, �a for
Ar, Kr and Xe is found to be less than one-third of the corresponding low-
temperature value. An applied hydrostatic pressure also causes an important
decrease in �a. For Ne and Xe, a pressure of 30 kbar reduces this difference
by a factor of 6.5 and 3.1, respectively. These differences in lattice parameter
are larger than the sensitivity limit presently achieved in experimental studies,
even for solid xenon at its Debye temperature.

1. Introduction

The study of isotopic substitution occupies an old and important place in solid state research.
Different types of isotopic effects have been studied over the years, some of which are
due to the variation of phonon frequencies with the average isotopic mass [1]. This mass
dependence of the frequencies causes changes in the average vibrational amplitudes. While at
high temperatures these amplitudes are independent of the isotopic mass, at low temperatures
they decrease with increasing mass, as a consequence of zero-point quantum motion, which
manifests itself through the anharmonicity of the interatomic forces. The simplest anharmonic
effect of this type is the dependence of the lattice parameters on isotopic masses, a quantum
effect observable at a macroscopic scale: lighter isotopes produce larger lattice parameters. At
temperatures higher than the Debye temperature of the solid considered, �D , the isotope effect
on the crystal volume becomes irrelevant and disappears in the high-temperature (classical)
limit. Something similar happens for other crystal properties, such as compressibility or
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heat capacity, which show maximum isotopic effects at low temperatures. Isotope effects
on the unit-cell parameters have been studied in different kinds of crystals by experimental
and theoretical techniques. In recent years, the isotope effect on the unit-cell parameters of
crystalline materials has been measured with unprecedented precision by using x-ray standing
waves [2, 3].

Rare-gas van der Waals solids form an important class of materials, which provide ideal
systems allowing fruitful comparisons between theory and experiment. The simplicity of these
solids makes them particularly interesting for studying structural and electronic transitions in
detail. The interatomic forces are weak, short range and rather well understood, so that
critical tests of appropriate theories by their ability to predict properties of rare-gas crystals
are relatively simple. At ambient pressure these solids are transparent and nonconducting, and
consist of spherically symmetric atoms crystallized into a face-centred cubic lattice. These
properties make noble-gas crystals more amenable to theoretical treatment than many other
solids. In particular, the thermodynamicproperties of these weakly bound solids are interesting
due to the large anharmonic contributions to their lattice dynamics. Solid helium is an extreme
case where short-range correlation effects are very important. For heavier elements, quantum
effects are less important, but some of them can still be observable at low temperatures, even
for solid xenon, because of the large anharmonicity of the lattice vibrations.

Anharmonic effects in rare-gas solids have been studied theoretically by means of different
approaches, among which one finds the so-called quasiharmonic approximation (QHA) [4, 5],
perturbation expansions [6, 7] and self-consistent phonon theories [8–11]. In particular,
isotopic effects in the lattice parameter of neon and argon were estimated by comparing results
obtained from Lennard-Jones potentials with different parameters [6]. In recent years, the
QHA has been employed to study isotopic effects in the crystal volume of covalent solids from
ab initio density-functional-theory calculations [12–14].

A different theoretical approach to studying anharmonic effects in solids is the Feynman
path integral (PI) method [15, 16], which turns out to be a well-suited method for studying
this kind of effect at temperatures at which the quantum character of the atomic nuclei is
relevant (T � �D). The combination of PIs with Monte Carlo (MC) sampling enables us
to carry out quantitative and nonperturbative studies of such anharmonic effects. The PI MC
method had been used earlier to study several structural and thermodynamic properties of
rare-gas solids [17–22]. In the context of the PI formalism, several authors developed effective
(temperature-dependent) classical potentials that reproduce accurately several properties of
quantum solids [23–25]. More recently, Acocella et al [26] have applied an improved effective-
potential MC theory [27] to study thermal and elastic properties of noble-gas solids. In our
present context, the PI MC method has been employed to study the isotopic shift in the helium
melting pressure [28, 29], as well as isotope effects in the structural properties of solid neon [18]
and diamond-type materials [30, 31]. The isotopic-mass dependence of the lattice constant,
in particular, can be described well from these kinds of simulations, which have yielded
results [32, 33] in good agreement with experimental data [3, 34].

In this paper, we study the isotopic effect on the lattice parameter of noble-gas solids by
means of PI MC simulations in the isothermal–isobaric ensemble. We analyse the dependence
of this isotopic effect on temperature and pressure. The interatomic interaction is described
by a Lennard-Jones potential. In a previous paper [33], we have studied with the same method
several structural and thermodynamic properties of solid neon. Thus, most of the results
presented here for the lattice parameter will refer to argon, krypton and xenon, and some data
on neon will be given for the sake of comparison.
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Table 1. Parameters σ and ε of the Lennard-Jones potential employed in this paper, average isotopic
mass 〈M〉 and de Boer parameter �. Calculated zero-temperature properties of rare-gas solids at
ambient pressure are also given: classical (a0) and quantum (anat ) lattice parameters, along with
kinetic energy per atom Ek(0) obtained from PI MC simulations of solids with average isotopic
mass.

Element σ (Å) ε (meV) 〈M〉 (amu) � a0 (Å) anat(0) (Å) Ek(0) (meV)

Ne 2.782 3.084 20.18 0.585 4.2890 4.4631 3.50
Ar 3.404 10.32 39.95 0.186 5.2480 5.3115 4.13
Kr 3.638 14.17 83.80 0.103 5.6088 5.6458 3.19
Xe 3.961 19.91 131.30 0.063 6.1068 6.1316 2.80

2. Method

Finite-temperature properties of rare-gas solids with different isotopic masses have been
calculated by PI MC simulations in the isothermal–isobaric (N PT ) ensemble. Quantum
exchange effects were not considered, since they are negligible at the densities considered
here. In the PI formulation of statistical mechanics, the partition function of a quantum system
is approximated by a discretization of the density matrix along cyclic paths. These quantum
paths consist of a finite number L (Trotter number) of ‘imaginary-time’ steps [15], which gives
rise to the appearance of L ‘replicas’ for each quantum particle in the numerical simulations.
Thus, the practical implementation of this method is based on an isomorphism between the
quantum system and a classical one, obtained by replacing each quantum particle (atomic
nucleus in the present case) by a cyclic chain of L classical particles, connected by harmonic
springs with a temperature-dependent constant [35]. Details on this computational method
can be found elsewhere [36–38].

Simulations have been performed on 5 × 5 × 5 cubic supercells of the face-centred-
cubic unit cell, including N = 500 rare-gas atoms. Periodic boundary conditions were
assumed. We have checked that this size is enough to have a negligible finite-size effect
on the lattice parameters obtained in the simulations. In particular, this size effect is smaller
than the statistical noise of the data presented below.

Rare-gas atoms were treated as quantum particles interacting through a Lennard-Jones
potential:

V (r) = 4ε

[(
σ

r

)12

−
(

σ

r

)6]
, (1)

with parameters ε and σ given in table 1. The parameters for Ar,Kr and Xe were taken from [39]
(σ was slightly changed in the case of Ar to improve the agreement with the experimental lattice
parameter of the solid with natural isotopic composition). The parameters for Ne are those
employed previously to study solid Ne [33]: ε coincides with that used in earlier PI MC
simulations [18, 40] and σ is slightly smaller than in [5, 17, 39].

The dynamic effect of interactions between nearest neighbours has been explicitly
considered, and the effect of interactions beyond nearest neighbours has been taken into account
by a static-lattice approximation [17, 18]. This assumption was employed earlier in PI MC
simulations of Lennard-Jones solids, yielding the same results as those obtained in simulations
including dynamical correlations up to several neighbouring atom shells [19]. Our simulations
were based on the so-called ‘primitive’ form of PI MC and the ‘crude’ energy estimator was
used [35, 41]. As in standard PI MC, quantum paths were discretized into L (Trotter number)
points. To keep a constant precision for the results at different temperatures,we have considered
a Trotter number that scales as the inverse temperature. At a given temperature, the actual
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value of L required to obtain convergence of the results depends on the Debye temperature of
the considered solid (higher �D needs larger L). We have taken LT = 250 K for solid Ar
and LT = 200 K for the other noble-gas solids, which were found to be sufficient to reach
convergence. The larger Trotter number necessary in the case of solid Ar is due to the higher
Debye temperature of this solid (�D ∼ 90 K for Ar versus ∼70 K for the other rare-gas solids).
This means that L = h̄ωc/(kB T ), with ωc ∼ 3ωD (ωD the Debye frequency of the material).
Thus, for example, a PI MC simulation on a 5 × 5 × 5 supercell of solid Ar at 5 K (L = 50)
is equivalent in computational effort to a classical MC simulation of L N = 25 000 atoms.
Results for the lattice parameter obtained from simulations with larger Trotter numbers lie
within the error bars of the data shown below. The convergence of the lattice parameter with
L in PI MC simulations has been studied with more detail in previous work [42].

Sampling of the configuration space has been carried out by the Metropolis method [43]
at temperatures between 3 K and the melting temperature of the different solids, as well as
at pressures between 1 atm and 30 kbar. For given temperature, pressure and isotopic mass,
a typical run consisted of the generation of 2 × 104 paths per atom for system equilibration,
followed by 3 × 105 paths per atom for the calculation of ensemble average properties. More
details on the application of this method were given elsewhere [36].

Rare-gas crystals with a natural isotopic composition have been modelled by setting the
average mass 〈M〉 for every atom in the simulation cell. (〈M〉 is given in table 1 for the different
rare gases studied here.) This is the so-called ‘virtual-crystal approximation’, whose validity
to describe phonon-related properties has been discussed by Cardona [1]. In particular, if
the mass fluctuation is not too large, the phonon frequencies scale as ω ∝ 〈M〉−1/2. We have
checked that the results obtained for the lattice parameter by using this approximation coincide
(within the precision of our results) with those yielded by distributing randomly atoms with
different masses in an adequate proportion over the simulation cell.

3. Results and discussion

3.1. Average isotopic mass

In figure 1 we present the temperature dependence of the equilibrium lattice parameter a
for rare-gas solids with natural isotopic composition, as obtained from PI MC simulations
at atmospheric pressure: (a) Ar, (b) Kr, (c) Xe. Open squares represent results of our
simulations and full curves indicate data derived from x-ray diffraction experiments by different
authors [44–46]. Both sets of data closely follow each other. For comparison with the results
of the quantum simulations, we have also displayed in figure 1 the temperature dependence of
a in the classical limit (infinite-mass limit), with the same Lennard-Jones potentials (triangles
and dotted curves). These classical MC simulations give at low temperatures a nearly linear
temperature dependence for the interatomic distance (or lattice parameter), which converges
for T → 0 to the value corresponding to the minimum potential energy of each crystal (point
atoms on their lattice sites).

The combined effects of anharmonicity in the interatomic potential and the quantum
character of the atomic nuclei show up clearly in the low-temperature lattice parameter of the
studied crystals, which is larger than that corresponding to the minimum potential energy of
the (classical) crystal, a0. The zero-temperature lattice parameters derived from classical a0

and quantum anat(0) simulations at ambient pressure are given in table 1. For Ar we find at
T = 0 an appreciable lattice expansion of 0.0635 Å. This means an increase of 1.2% in the
lattice parameter due to anharmonicity of the zero-point atomic motion, which amounts to
about one-third of the change in a originated from thermal expansion between T = 0 K and
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Figure 1. Temperature dependence of the lattice parameter of rare-gas crystals with natural isotopic
composition: (a) Ar, (b) Kr, (c) Xe. Open squares indicate results of PI MC simulations with
Lennard-Jones potentials. Triangles and dotted curves represent results derived from classical MC
simulations with the same interatomic potentials. Error bars are less than the symbol size. Full
curves represent results derived from x-ray diffraction experiments for Ar [44], Kr [45] and Xe [46].

the melting temperature of argon (84 K). This quantum effect decreases as the atomic mass
rises, but even for Xe it is not negligible and we obtain anat(0) − a0 = 0.0248 Å. Thus, we
find that the relative increase in lattice parameter at T = 0, ψ = [anat(0) − a0]/a0, decreases
from 4.06 × 10−2 for Ne to 4.06 × 10−3 for Xe.

For Lennard-Jones solids, the magnitude of quantum effects can be quantified by the so-
called de Boer parameter, defined as � = h/σ

√
Mε [47–49]. This parameter ranges from 0.06

for Xe to 0.59 for Ne (see table 1). For comparison, we mention that � = 2.67 for 4He, which
shows well-known pronounced quantum effects. In figure 2 we have plotted the relative zero-
temperature lattice expansion ψ versus the de Boer parameter �. As expected, ψ increases
with �, and we find a nearly linear relation between both quantities. For each noble gas studied
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Figure 2. Low-temperature relative change in the lattice parameter, ψ = [anat(0)− a0]/a0, versus
the de Boer parameter � for rare-gas solids with natural isotopic composition. Symbols represent
results derived from PI MC simulations.

here, the mass difference between the heaviest and lightest stable isotope is close to 10% of
the average mass. This means that relative changes in � for a given element are about 5%,
since this parameter scales as M−1/2.

For given volume and temperature, the internal energy of a solid, E(V , T ), can be written
as

E(V , T ) = E0 + Eel(V ) + Evib(V , T ), (2)

where E0 is the minimum potential energy for the (classical) crystal at T = 0, Eel(V ) is the
elastic energy and Evib(V , T ) is the vibrational energy. The elastic energy depends only on
the volume (and implicitly on T because of the temperature dependence of V ) and at low
T is basically due to the change in volume originating from zero-point vibration [33]. The
vibrational energy depends explicitly on both V and T and can be obtained by subtracting the
elastic energy from the internal energy. PI MC simulations allow one to obtain separately the
vibrational kinetic, Ek , and potential energy, E p, as explained in detail elsewhere [36, 37, 50].
Our results for the kinetic energy of noble-gas solids at T = 0 are given in table 1. They
are close to those obtained by Nosanow and Shaw [51] from Hartree calculations with a
Lennard-Jones potential. In fact, differences between both methods are less than 2% for the
solids studied here, except for Ne, for which they differ by about 5%. Our results for the
zero-temperature kinetic energy of rare-gas solids, as well as those found in earlier work (see
e.g. [51]) do not show a smooth trend for the different elements as the atomic mass changes.
Thus, one finds the maximum Ek(0) for Ar. This can be qualitatively understood by looking at
the Debye temperature of these solids, which also present a maximum value for argon. In fact,
�D is close to 70 K for Ne, Kr and Xe, whereas �D ≈ 90 K for solid argon. In a simple Debye
model, assuming a vibrational density of states ρ(ω) ∝ ω2, and a cutoff ωD , one has a linear
relation between Ek(0) and ωD (in fact, one finds E D

k (0) = 9
16 h̄ωD [33, 52]) and one expects

the highest Ek(0) for solid argon. For the other elements, one observes a decrease in Ek(0) as
mass rises. This decrease is found to be larger than expected from the crude Debye model.
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Figure 3. Anharmonicity parameter ξ for rare-gas crystals with natural isotopic composition.
Squares: Ar; diamonds: Kr; circles: Xe. Error bars are less than the symbol size. Dotted curves
are guides to the eye.

A quantitative evaluation of the overall anharmonicity of the atom vibrations can be
obtained by comparing the potential and kinetic energy at different temperatures. With this
purpose we consider the anharmonicity parameter [18]: ξ = 2(Ek − E p)/(Ek + E p), which
should be zero for a harmonic solid at any temperature, as follows from the virial theorem.
In figure 3 we present the temperature dependence of the parameter ξ for Ar (squares), Kr
(diamonds) and Xe (circles), as derived from our PI MC simulations. This parameter is
positive in all cases, and increases as the atomic mass is lowered. ξ also increases as the
temperature rises, as expected for an increase in anharmonicity at finite temperatures, when
compared with the low-T limit. For T → 0 we find ξ = 0.066, 0.036 and 0.021, for Ar, Kr
and Xe, respectively. For these three solids, we find at the corresponding melting temperature
ξ ≈ 0.12. The same kind of MC simulations give for Ne at T → 0 a parameter ξ = 0.21 [33],
corresponding to a much larger anharmonicity of the atom vibrations. Note that this is a pure
quantum effect due to zero-point motion, since at T = 0 the atoms feel the anharmonicity
of the interatomic potential, in contrast with any classical model, where ξ → 0 for T → 0,
irrespective of anharmonicity.

Anharmonic effects in solid Ar have been quantified earlier by comparing the kinetic and
potential energies derived from PI MC simulations [18]. For T → 0 these authors found an
anharmonicity parameter ξ = 0.0675, close to the value obtained here. These anharmonicities
are large as compared with those found for covalent solids at low temperatures (T � �D).
For example, for diamond, silicon and germanium one finds at low T differences between
E p and Ek smaller than 1%, and at the Debye temperature of each material, they are less
than 3% [30, 31, 42]. It is worthwhile mentioning also that for such covalent materials the
vibrational potential energy E p is larger than Ek (i.e. ξ < 0), opposite to the present case of
rare-gas solids where ξ > 0. This means that the result E p < Ek found here is not general
in solids, and can be associated with the particular character of the interatomic interactions
present in rare-gas (Lennard-Jones) solids.
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Figure 4. Lattice parameter of Kr crystals as a function of isotopic mass at T = 5 K and P = 1 atm.
Symbols indicate results of PI MC simulations. The broken line is a least-square fit to the simulation
results. Error bars are less than the symbol size.

3.2. Isotopic effect at low temperature

In figure 4 we show the dependence of the lattice parameter on isotopic mass for Kr crystals
at 5 K. From the PI MC results (symbols), we find a linear dependence of a on the mass
M . Similar linear dependencies are found for the other rare-gas crystals and are presented
in figure 5. In this figure we display the difference δa = a − anat as a function of the ratio
M/〈M〉. Different symbols correspond to different elements: squares for Ar, diamonds for
Kr, circles for Xe, and broken lines are least-square fits to the data points. The slope of these
lines becomes more negative as the atomic mass is lowered.

The low-temperature changes in a due to isotopic mass can be related to the zero-point
lattice expansion of a crystal with average isotopic mass 〈M〉. In fact, in a QHA the lattice
parameter anat(0) at T = 0 can be expressed as [14, 31]

anat(0) = a0 +
χ(0)

6a2
0

∑
n,q

h̄ωn(q)γn(q). (3)

Here, ωn(q) are the frequencies of the nth mode in the crystal, χ(0) is the zero-temperature
compressibility and γn(q) = −∂ ln ωn(q)/∂ ln V is the Grüneisen parameter of mode n, q.

From a first-order expansion for the lattice parameter as a function of isotopic mass, and
assuming that the frequencies ωn(q) scale with isotopic mass as 1/

√
M , one finds for the

relative change in lattice parameter with isotopic mass at T = 0:

δa

δM
= −anat(0) − a0

2〈M〉 , (4)

where δM = M −〈M〉. This means that the low-temperature changes in a due to isotopic mass
can be explained quantitatively from the change in lattice parameter caused by the atomic zero-
point motion in the natural crystal, as compared to the ‘classical’ crystal, in which a is given
by the minimum of the potential energy. By taking anat(0)− a0 = 0.037 Å for Kr (see above),
equation (4) gives δa/δM = −2.21×10−4 Å amu−1, close to a value of −2.25×10−4 Å amu−1

obtained from the PI MC simulations of Kr crystals with different isotopic masses (see figure 4).
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Figure 5. Difference in lattice parameter δa = a − anat as a function of the mass ratio M/〈M〉, at
T = 5 K and P = 1 atm. Symbols represent results of PI MC simulations for Ar (squares), Kr
(diamonds) and Xe (circles). Broken lines are least-square fits to the simulation results.

Using the same procedure, equation (4) gives for Ar and Xe the ratios δa/δM = −7.95×10−4

and −9.44 × 10−5 Å amu−1, respectively. This ratio for Xe coincides (within error bars) with
that derived from the PI MC simulations, whereas the ratios δa/δM obtained for solid Ar with
both procedures differ by 9%. This is caused by the higher anharmonicity present in the latter
case, which means that the assumptions employed to derive equation (4) are less precise:

(1) neglect of higher-order terms in the expansion of the lattice parameter as a function of
isotopic mass, and

(2) the assumption that ωn(q) scales with mass as in a harmonic solid (∼ 1/
√

M).

In any case, if the zero-point expansion for a natural crystal is known,equation (4) provides
one with a good estimate of the isotopic effect.

To summarize, we find an appreciable zero-temperature isotopic effect in the rare-gas
solids studied here. This isotope effect is due to the anharmonicity of the zero-point vibrations,
which is well captured by a QHA in which the phonon frequencies depend on both mass and
crystal volume. The dependence of the compressibility and Grüneisen parameters upon isotope
mass does not appear to be relevant in this context.

3.3. Temperature dependence of the isotopic effect

In figure 6 we show the difference �a between the lattice parameters of isotopically pure
crystals with the lightest and heaviest stable isotopes, for argon (36Ar and 40Ar), krypton (78Kr
and 86Kr) and xenon (124Xe and 136Xe). In each case, �a decreases as the temperature is
raised, since quantum effects become less relevant to describe the atomic motion. One still
observes this isotope effect in the lattice parameter at temperatures on the order of the Debye
temperature of the considered crystals. This happens even for Xe, in spite of the large atomic
mass of this element. Note that today’s state-of-the-art experimental techniques allow one to
measure lattice-parameter differences smaller than those found here. In fact, the difference
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Figure 6. Temperature dependence of the difference between lattice parameters of isotopically pure
crystals composed of the lightest and heaviest stable isotopes. Argon (squares): 36Ar and 40Ar;
krypton (diamonds): 78Kr and 86Kr; xenon (circles): 124Xe and 136Xe. Error bars are less than
(on the order of) the symbol size at T < 40 K (T > 40 K). Dotted curves are guides to the eye.
Broken curves correspond to a high-temperature approximation and were derived from equation (9)
as indicated in the text.

�a = 2.5×10−4 Å obtained for Xe at 75 K is larger than those found experimentally for silicon
and germanium crystals with controlled isotope concentrations [2, 3]. Note that we call δa
changes in the lattice parameter with respect to the crystal with natural isotopic composition,
and �a differences between lattice parameters of crystals composed of the lightest and heaviest
stable isotopes of each element.

To analyse the results of our MC simulations we consider again a QHA for the lattice
vibrations. In this approach, the lattice parameter at temperature T , a(T ), for isotopic mass
M and zero pressure can be written as [14]

a(T ) = a0 +
χ

3a2
0

∑
n,q

γn(q)En(q, T ), (5)

where

En(q, T ) = 1

2
h̄ωn(q) coth

(
h̄ωn(q)

2kB T

)
. (6)

At high temperatures (T � �D), one can expand En(q, T ) in powers of 1/kB T to obtain

a(T ) ≈ a0 +
χ

3a2
0

∑
n,q

γn(q)

[
kB T +

[h̄ωn(q)]2

12kB T

]
, (7)

and assuming a mass dependence of the frequencies ωn(q) ∼ 1/
√

M , we find for the change
of lattice parameter with isotopic mass:

δa

δM
≈ − χ

36a2
0〈M〉kB T

∑
n,q

γn(q)
[
h̄ωn(q)

]2
. (8)

Thus for T up to the melting temperature of each solid, δa/δM is expected to decrease as 1/T .
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The high-temperature ratio δa/δM given in equation (8) can be estimated by assuming
a Debye density of states (proportional to ω2) and an average mode-independent Grüneisen
constant γ [49]. Taking into account that the face-centred-cubic unit cell includes four atoms
(and therefore 12 independent modes per cell), one finds

δa

δM
≈ − γχ(h̄ωD)2

5a2
0〈M〉kB T

. (9)

Taking ωD = 63, 50 and 44 cm−1 and γ = 2.6, 2.8 and 2.9 for Ar, Kr and Xe,
respectively [44, 45, 53], we find from equation (9) the temperature dependence of�adisplayed
in figure 6 by broken curves. At T > 50 K these curves lie close to the data points derived from
PI MC simulations. This means that the isotopic effect on the lattice parameter at temperatures
on the order of �D can be estimated rather accurately by employing equation (9), which makes
use only of known parameters of the crystal under consideration.

3.4. Pressure dependence of the isotopic effect

To check the reliability of the Lennard-Jones potential employed here to reproduce the
properties of rare-gas solids under (low) pressure, we have calculated the isothermal
compressibility χ at ambient pressure. This quantity can be derived in MC simulations in
the isothermal–isobaric ensemble from fluctuations in the lattice parameter. The mean-square
fluctuations in the volume V of the simulation cell are given in this ensemble by

σ 2
V = χV kB T, (10)

and therefore

χ = 9l3a

kB T
σ 2

a . (11)

Here l is the side length of the simulation cell in units of the lattice parameter (l = 5 in our
case), and σ 2

a indicates the mean-square fluctuations in the lattice parameter at temperature T .
Results for the isothermal compressibility of rare-gas solids derived in this way are

presented in figure 7 (symbols) as a function of temperature, along with experimental data
for crystals with natural isotopic composition (curves) [44, 46, 54]. The overall agreement
between calculated values and experimental results is satisfactory, given the uncertainty in the
data actually measured (error bars are shown for some experimental points, and those of the
calculated compressibility are less than the symbol size). In the zero-temperature limit we
find χ = 3.78, 3.09 and 2.75 × 10−11 cm2 dyne−1 for Ar, Kr and Xe, respectively, with an
estimated error bar of ±2×10−13 cm2 dyne−1. For solid neon, the same procedure yields χ =
1.01×10−10 cm2 dyne−1 [33], a value much larger than for the other noble-gas solids. Note that
the classical expectancy at T = 0 is given by χcl(0) = σ 3/75ε (see, e.g., [49]). Values of χcl(0)

derived by using the σ and ε values given in table 1 are appreciably lower than those found
in PI MC simulations, even for Xe. This means that quantum effects give rise to an important
increase in the low-temperature compressibility (19% for Ar, 9% for Kr, and 5% for Xe).

In figure 8 we present the difference �a between the lattice parameter of isotopically pure
crystals of noble gases as a function of pressure. In this figure, data for Ne are also included,
as they have not been presented in earlier publications. In each case, �a decreases as pressure
rises, and the relative decrease in this isotopic effect is more pronounced for Ne than for the
other elements. Thus for solid Ne, �a decreases from 8.73 × 10−3 Å at P = 1 atm to
1.35×10−3 Å at P = 30 kbar. This means a reduction of �a by a factor of 6.5 in this pressure
range. At the other extreme, for Xe one finds a decrease in �a by a factor of 3.1 in the same
pressure region. This is indeed due to the larger compressibility of Ne,as compared with Xe. In
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Figure 7. Isothermal compressibility χ at ambient pressure as a function of temperature.
Symbols indicate results derived from PI MC simulations for rare-gas solids with natural isotopic
composition: squares, Ar; diamonds, Kr; circles, Xe. Error bars of the calculated compressibilities
are smaller than the symbol size. Curves represent experimental data obtained by different authors:
Ar [44], Kr [45]. For Xe, the full curve is from [46], whereas the broken curve represents more
recent results from [54]. Error bars are given for some experimental points, indicated by black dots.

fact, as shown in figure 7, χ decreases as the atomic mass of the noble gas rises. This decrease
in the isotopic effect is mainly caused by a reduction of the compressibility as pressure is
raised. At low temperatures, this can be qualitatively understood from equations (3) and (4).
From these equations one sees that the change in δa with applied pressure can be derived
from the changes in the compressibility χ , the ‘classical’ lattice parameter a0 (both decreasing
with pressure) and the phonon frequencies ωn(q) (which usually increase with pressure). The
pressure-induced changes in χ clearly dominate those of a2

0 and ωn(q) in equation (3), giving
rise to the important decrease in δa presented in figure 8 for noble-gas solids.

Using diamond-anvil cell methods, one can nowadays study materials under very high
pressures. In fact, rare-gas solids have been studied in recent years at hydrostatic pressures of
hundreds of kilobars [55–58]. At such high pressures, the isotopic effects on structural and
thermodynamic properties of these solids will be drastically reduced with respect to ambient-
pressure values. The reliability of the present Lennard-Jones potential to study rare-gas solids at
high pressures is, however, not guaranteed, since three-body terms in the interatomic potential
can be necessary to reproduce the structural and thermodynamic properties of these solids.

4. Conclusions

PI MC simulations provide us with a powerful tool to study isotopic effects in rare-gas solids,
originating from the anharmonicity of the interatomic potential. This method allows us to study
phonon-related properties, without the assumption of harmonic or QHAs, usually employed in
theoretical studies. In this way, one can separate the kinetic and potential contributions to the
vibrational energy of the solid and quantify the anharmonicity of the lattice vibrations, which
together with zero-point motion give rise to isotopic effects on structural and thermodynamic
properties of solids.
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Figure 8. Pressure dependence of the difference between lattice parameters of isotopically pure
crystals composed of the lightest and heaviest stable isotopes. Symbols represent results derived
from PI MC simulations at 5 K. Neon (black squares): 20Ne and 22Ne; argon (open squares): 36Ar
and 40Ar; krypton (diamonds): 78Kr and 86Kr; xenon (circles):124Xe and 136Xe. Error bars are less
than the symbol size. Curves are guides to the eye.

Owing to the large anharmonicity of the lattice vibrations in noble-gas solids, the isotopic
effect on the lattice parameter of these solids is appreciable. We emphasize that even for solid
xenon it is measurable at temperatures on the order of its Debye temperature (�D ≈ 64 K) with
current experimental techniques. At low temperatures, the dependence of the lattice parameter
on isotopic mass is related to the zero-point lattice expansion, as indicated by equation (4).
The magnitude of this isotopic effect changes drastically as temperature or pressure increase.
At 80 K it is clearly reduced with respect to the zero-temperature limit. At this temperature
�a for Ar, Kr and Xe is less than one-third of the corresponding low-temperature value. An
applied pressure also causes an important decrease in �a. Thus, a modest pressure of 30 kbar
reduces this difference by a factor 6.5 for Ne and 3.1 for Xe.

We finally note that the isotopic effect studied here for rare-gas solids turns out to be
larger than that found in covalent materials, as a consequence of the larger anharmonicity of
the interatomic interactions in the present case. Other structural and thermodynamic properties
of these solids are expected to show isotopic effects that, although smaller than in the case of
neon, can be measurable for the other noble gases.
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